Reflections. Write a short essay surveying well-orderings, ordinals, natural numbers, equinumerosity, cardinals, and Axiom of Choice. Pick a definition, a statement (e.g. theorem), and a proof that you thought were most crucial for the development of the theory; explain your choices.

1. Let (A, \leq) be a partial ordering and let \mathcal{C} be a set of chains in A, i.e. $\mathcal{C} \subseteq \mathscr{P}(A)$ and each $C \in \mathcal{C}$ is a chain. Suppose that any two $C, C^{\prime} \in \mathcal{C}$ are \subseteq-comparable, i.e. $C \subseteq C^{\prime}$ or $C^{\prime} \subseteq C$. Prove that $\bigcup \mathcal{C}$ is a chain.

Hint: It is enough to show that for any $a, b \in \bigcup \mathcal{C}$, there is $C \in \mathcal{C}$ with $a, b \in C$.
2. Denote by $<$ the relation \in on ordinals and let $\kappa \geq \omega$ be a cardinal.
(a) For any well-ordering $(A,<)$, if $|\operatorname{pred}(a, A,<)|<\kappa$ for each $a \in A$, then $(A,<) \preceq(\kappa, \in)$.

Hint: Take the unique ordinal α such that $(A,<) \simeq(\alpha, \in)$.
(b) Define a binary relation $<_{2}$ on $\kappa \times \kappa$ as follows: for $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right) \in \kappa \times \kappa$, put $\left(\alpha_{1}, \beta_{1}\right)<_{2}\left(\alpha_{2}, \beta_{2}\right)$ if and only if

$$
\begin{gathered}
\max \left\{\alpha_{1}, \beta_{1}\right\}<\max \left\{\alpha_{2}, \beta_{2}\right\} \\
\text { or } \\
{\left[\max \left\{\alpha_{1}, \beta_{1}\right\}=\max \left\{\alpha_{2}, \beta_{2}\right\} \text { and }\left(\alpha_{1}, \beta_{1}\right)<_{\text {lex }}\left(\alpha_{2}, \beta_{2}\right)\right] .}
\end{gathered}
$$

Prove that $<_{2}$ is a well-ordering.
(c) (Optional) (Doesn't use AC) Prove by transfinite induction that for any cardinal $\kappa \geq \omega$, $|\kappa \times \kappa|=\kappa$.

Hint: Use the induction hypothesis to deduce that for each $(\alpha, \beta) \in \kappa \times \kappa, \mid \operatorname{pred}((\alpha, \beta), \kappa \times$ $\left.\kappa,<_{2}\right) \mid<\kappa$. Apply (a).
(d) (Uses AC) Conclude that if $\left(A_{\alpha}\right)_{\alpha<\kappa}$ is a sequence of sets of cardinality at most κ, then $\left|\bigcup_{\alpha<\kappa} A_{\alpha}\right| \leq \kappa$. Pinpoint exactly where you use AC.
3. (Uses AC) Let (A, \leq) be a partially ordered set. Call a chain $C \subseteq A$ maximal if it cannot be extended to a bigger chain, i.e. there is no $a \in A \backslash C$ such that $C \cup\{a\}$ is a chain. Prove that any chain $C \subseteq A$ is contained in a maximal chain.
4. (Optional) (Uses AC) Prove that every vector space admits a basis.
5. (Uses AC) Prisoners and hats. ω-many prisoners were sentenced to death, but they could get out under one condition: on the day of the execution they will be lined up, i.e. enumerated $\left(p_{n}\right)_{n \in \omega}$, so that everybody can the people in front of them (with higher index), i.e. p_{n} sees p_{m} if and only if $n<m$. Each of the prisoners will have a red or blue hat put on him/her, but he/she won't be told which color it is. On command, all the prisoners (at once) shout a guess for the color of their hat. If all but finitely many prisoners guess correctly, all prisoners go home free; otherwise they are all executed. The good news is that the prisoners developed a strategy the day before the execution, and indeed, all but finitely many prisoners guessed correctly the next day, so everyone was saved. How did they do it?

Hint: Thinking of the sequence of hats as a binary sequence, call two binary sequences $x, y \in 2^{\mathbb{N}} E_{0}$-equivalent if all but finitely many of their entries are equal, i.e.

$$
x E_{0} y: \Leftrightarrow \exists N \in \mathbb{N} \forall n \geq N x(n)=y(n) .
$$

